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STUDY OF A THREE-DIMENSIONAL TURBULENT BOUNDARY LAYER 

WITH ALLOWANCE FOR COUPLED HEAT TRANSFER 

V. I. Zinchenko and O. P. Fedorova UDC 533.526+536.24 

This article examines the solution of a problem concerning the heating of a cone with 
a spherical blunting in a supersonic air flow at angles of attack in the case where the Rey- 
nolds numbers are such as to realize different flow regimes. We study the effect of noniso- 
thermality of the surface of the body on the heat flow reaching it in the turbulent boundary 
layer, and we evaluate the accuracy of conventional approaches based on calculation of heat- 
ing with a specified coefficient of heat transfer from the gas phase. 

i. In accordance with [I, 2], characteristics of coupled heat transfer will be sought 
from the solution of a system of equations describing the change in the averaged quantities 
in a three-dimensional boundary layer [3] and the nonsteady unidimensional equation of heat 
conduction in the skin of a body with corresponding boundary and initial conditions. 

The boundary layer on the spherical part of the body was calculated as being axisymme- 
tric in the coordinate system connected with the stagnation point. We then changed over to 
a semigeodesic coordinate system connected with the symmetry axis of the body. After the 
introduction of the stream functions f and ~, the system of equations of the three-dimension- 
al boundary layer appears as follows in Dorodnitsyn-Lees coordinates: 

= a~a-~ 1 (1.1) ~ / +  

~n~ + (i.2) 
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With a l l o w a n c e  f o r  t h e  a s s u m p t i o n  t h a t  t h e  p r o c e s s  i s  u n i d i m e n s i o n a l ,  t h e  n o n s t e a d y  equa -  
t i o n  o f  h e a t  c o n d u c t i o n  in  t h e  body can  be w r i t t e n  as  f o l l o w s  in  t h e  o r t h o g o n a l  s e m i g e o d e s i c  
coordinate system: 

~0 ~ = ~ ~ H ~ r ~  �9 ( 1 .4  ) 

The boundary and initial conditions are as follows: 

u(~, n, oo) = i,  ~(~, n, oo) = l, g(~, n, oo) = l; 

u-(~, ,~, o)  = o,  ~(~, n, o) = o , / ( t ,  n ,  o)  = ~(~, n, o) = o,  

- ~ o  oo (~, 0); q= (~, % o) V ~  v r  ~ - ~o0~  = - ~ (%) 

'~k ~ = o  o~ o ~ , ~  = % ,  o ( o , ~ 0 = % .  

(1.5) 

(1.6) 

(1.7) 

Here and below, $ is the dimensionless length of an arc reckoned from the symmetry axis; N, 
an angle reckoned from the windward side in the plane of symmetry of the body, rad; ~ = 

UerwS pdn 2RN p,peuer~d~ and n~ = -n/R N are directed along a normal to the outer contour 

on different sides; g = H/He0 , u = 8f/8~, m = 8 /8~, dimensionless enthalpy and velocity com- 
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ponents in the longitudinal and circumferential directions; a I = 

er-e e w k o  / 

( ~ d~ w ~ OfDe~. _ rw 2 ~ 1 ,  80"T3 
altr-~ +We.= 0~ ] r==-- 71=~, uo-- 01% uz= -- ~ -- * dimensionless coefficients 

' B N '  ~ - -  Pl*Cl* ' l l *  ~'1. ' 

and parameters; qw=~ On Iwpeo--~mHeo~ 0=~ T----T,, dimensionless heat flux, temperature, and 

time; $, = R~Pl*C** ~i, , Vm = ~2He0' B~, L , characteristic times and the velocity, radius of blunt- 

ing, and thickness of the skin; H I = 1 - kn, r I = r w - n lcosS, the Lame constants (k is the 
curvature of the generatrix, 8 is the angle of inclination of the generatrix to the symmetry 
axis); the indices e, e0, and w denote values of the external boundary of the boundary layer, 
while the indices I, *, and T denote characteristics of the solid phase, characteristic quan- 
tities, and characteristics of turbulent transport. 

We used a two-layer model of a turbulent boundary layer [4] to describe the turbulent 
flow. In ~he internal region, the coefficient of eddy viscosity was determined from the 
Prandtl formula with a van Dreist-Sebechi damping factor generalized to the three-dimensional 
case 

n 2 au 2 

~ o n /  ) ' ( 1 . 8 )  
2\0.5 A = 2 6 ,  - t l , s > )  = = +  ooj,, 

i /Ue  C~Pe (% OPe\ 
> ~ L ~ . ~  ~ - ~ - +  r ~ - ) ,  
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In the external region, the coefficient of eddy viscosity was calculated from the Clausius 
formula 

oo 

laT = 0 . 0 i 6 p  i -6 5 . 5  ~- Ue - -  (u 2 -i- r ~ dn. 
0 

(1.9) 

The boundary between the internal and external regions was found from the condition of equa- 
lity of the coefficients (1.8) and (1.9). 

To calculate flow in the transitional region, we used the formulas 

p~ P~T (~ + r ~ r ) P r P r r  
I = ~ + ~ p-~-~, P r~  = ~ pr  T + r~  T Pr 

where r is the coefficient of longitudinal alternation. This coefficient was determined in 
[5] for the case of flow about bluff bodies. For the laminar flow region, F = O. For de- 
veloped turbulence, F = i. The beginning of the transitional region was determined from the 
point of loss of stability found on the spherical blunting for the critical value of the Rey- 
nolds number 

oo 

0 
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In performing the. calculations, we chose the values Re = VmPe0RN/Pe 0 so that the laminar- 
turbulent transition took place on the spherical part of the body. We used the method in 
[6] in solving the problem of the development of an axisymmetric boundary layer from the stag- 
nation point, with allowance for the laminar, transitional, and turbulent flow regimes. On 
the external boundary of the boundary layer, the conditions were chosen on the basis of calcu- 
lations of inviscid flow about a body [7] and were approximated by means of two-dimensional 
smoothing splines [8]. 

The difference schemes for the theoretical regions in the gas phase and the body were 
obtained by an iterative-interpolational method [9] with an approximation error O(&~) 2 + 
O(AE) + O(Aq), O(Anl) 2 + O(AT). The integration step was chosen from the condition of the 
presence of theoretical convergence as determined by the method in [I0]. 

In obtaining the numerical solution for Pr = 0.72, Pr T = i, the coefficient of molecular 
viscosity p was assigned by means of Sutherland's formula. The thermophysical characteris- 
tics of the material were assumed to be constant, and the following parameters were varied: 
Re and M~, the temperature factor 8w, the angle of attack a, and the parameter S = ~Pr~e0/ 
%1,. The latter parameter is used in problems of coupled heat transfer. 

2, Let us examine the results of the solution of boundary-value problem (1.1)-(1.3), 
(1.5), (1.6) in the case of a prescribed surface temperature. 

Figure I (a = 0, 4.7, i0 ~ for lines l-3)shows the dependence of the relative heat flux 
qw/qw0 on the coordinate s (reckoned from the stagnation point) in the plane of symmetry of 
the flow. These results were obtained in the solution of the problem of a three-dimensional 
turbulent boundary layer for the data in [ii] (M~ = 5, ~ = 9 ~ , Re = 5.03"106 , 8 w = 0.25). 
The positive values of s correspond to the windward side, while the negative values corre- 
spond to the lee side. The symbols denote the results of the experimental study in [ii], 
the dashed curve shows the theoretical dependence of qw/qw0 on s for a = i0 ~ along the meri- 
dional section n = ~/2. The heat flows for N = ~/2 are close to the flows realized in the 
case of axisymmetric flow about the same cone. This result has to do with the weak effect 
of divergence of the streamlines at the meridian q = ~/2 on the local heat losses and is con- 
sistent with the experimental results for both the turbulent and laminar flow regimes. The 
satisfactory agreement between the theoretical and experimental data on heat flux is evident 
from Fig. I, thus lending validity to the turbulent boundary-layer model being used here. 

An increase in the angle of attack on the windward side is accompanied by an increase 
in heat flux, while an increase in the angle on the lee side is accompanied by a reduction 
in heat flux. A further increase in the angle of attack may be accompanied by the appearance 
of a local pressure maximum Pc(q) with q = ~, leading to restructuring of the flow inside the 
boundary layer and the formation of a spreading region. As a result, the thickness of the 
boundary layer decreases on the lee side and heat flux begins to increase. 

Such behavior of qw($) is seen on the lee side at ~ = 20.9 ~ (Fig. 2). In Fig. 2, dashed 
curves i and 4 correspond to q = 0, ~, respectively, while 8 w = 0.05. Experimental studies 
[ii] showed that for a = 20.9 ~ the heat fluxes at q = ~ also behave nonmonotonically. It 
should be noted that the theoretical data on pressure Pe on the lee side for this angle of 
attack agrees satisfactorily at $ ~ 5 with the distribution of Pe obtained empirically in 
[11]. The nonmonotonic behavior of the function qw($) (dashed line i, Fig. 2) at q = 0 for 

= 20.9 ~ is due to the increase in pressure at ~ ~ 2.7 for the given a. 

Let us examine the effect of the temperature factor on the heat fluxes qw and the ratio 
~ ~ X of  t h e  S t a n t o n  numbers S t / S t * ,  where  Sty, = qw~/[p~V~cp(Te0 - TWO)] c o r r e s p o n d s  t o  t h e  ma imum 

value of heat flux qw* reached in the neighborhood of the Mach line of the sphere. For the 
governing parameters shown in Fig. I, Fig. 2 shows the relations qw($, n) and St/St*($, q) 
in the meridional sections q = 0, ~/2, 2.2 with ~ = i0 ~ (curves 1-3). Here, the solid lines 
correspond to the value 8 w = 0.248, the dashed lines correspond to 8 w = 0.5, and the dot-dash 
lines correspond to laminar flow at e w = 0.248. It is evident that for these flow conditions 
the heat fluxes depend appreciably on the temperature factor and that qw($, q) is 4-5 times 
greater in the turbulent regime than in the laminar regime. 

The values of St/St* change only slightly with a change in the temperature factor by 
an order of magnitude. Points I and II show St/St* for 8 w = 0.05 and 0.248 in all sections 

(relations 1-3). The solid line corresponds to e w = 0.5. The conservative behavior of 
St/St* makes it possible to construct reliable methods for determining fluxes to an isother- 
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mal surface. Points III show the distributions of St/St* obtained from the formula in [12]. 
Our calculations show that an increase in 8 w from 0.05 to 0.8 causes a change in St/St* by 
no more than 14% over the entire surface of the body. 

It follows from Figs. 1 and 2 that the heat-flux distribution on the surface is complex 
in character, determining Tw(~, q) and the temperature field inside the body in the solution 
of the heating problem. 

The results of solution of the problem in the coupled formulation are given in Fig. 3. 
The calculations were performed with ~ = I0 ~ 8 i = 0.248, v~Pr~e0/~z, = 3.19, 88/8ni(~, 
L/R N = 0, L/R N = 0.i. The rest of the parameters were the same as in Fig. i. The depen- 
dences of qw and 8 w on $ are shown in three meridional sections q = 0, ~/2, 2.2 (lines 1-3) 
at the moments of time T = 0, 0.0055, 0.024 (solid, dashed, and dot-dash curves). As might 
have been expected, the greatest heating is attained on the windward side in the neighborhood 
of the symmetry plane. Meanwhile, there is a substantial reduction in the temperature 8 w with 
a change to the lee side of the body. At the same time, the heat flux and temperature in 
fixed meridional planes change little along the conical surface at $ ~ 3.5 for the theoreti- 
cal angle of attack. 

Figure 4 presents the results of analysis of the solution shown in Fig. 3 in the form 
of the dependences of St/St* = qw($, q)[l - ew*]/[l - ew($, q)]qw* on the variable q in the 
sections ~ = 1.45, 4.54 (lines 1 and 2) for the moments of time ~ = 0 and 0.0055 (solid and 
dashed curves). Here, the asterisks correspond to the formulas in [12] at the initial moment 
of time T = 0 for the isothermal surface. It is evident that the nonisothermal character 
of the surface leads to an increase in the relative Stanton number specifically as a result 
of the negative values of 8ew/8~ , 86w/8 D. Meanwhile, the stratification of the curves de- 
creases with movement along the meridional section. 

For large periods of time, the attainment of high temperatures on the surface of the 
spherical blunting causes the heat flow to the region to decrease considerably. In this case, 
it is better to analyze the solution in the form 

st q~ (~, ~) [I - o~ i(~, ~)] 
s~ q~i (~, ~) [I - o~ (~, ~i)] 

where qwi and 8wi are the heat flux and temperature of the surface at the point (~, q) at 
the initial moment of time. Figure 5 shows the dependence of St/St i on 6 w obtained in analy- 
sis of the solution of the problem of nonsteady heat transfer in the symmetry plane of a blunted 
cone on the windward side (b, d, f) and lee side (a, c, e) for ~ = 5 (a, b), i0 (c, d), and 
20.9 ~ (e, f) in the sections $ = 1.45, 4.54 (lines 1 and 2). The dashed curves show values 
of St/St i found in these sections by integration of the equations of a three-dimensional tur- 
bulent boundary layer in the neighborhood of the symmetry plane for different isothermal wall 
temperatures. It is evident that in the solution of the conjugate heat-transfer problem there 
is a qualitative difference in the behavior of St/St i in the vicinity of the spherical tip 
compared to the value found with parametric selection of e w. 
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Such behavior of St/St i in the solution of boundary-value problem (1.1)-(1.7) is connec- 
ted with the fact that, as in the axisymmetric case [6], formation of the nonisothermal tem- 
perature distribution [i/(i - 8w)(~8/Sg) < 0 causes an increase in the coefficient of heat 
transfer to the body. 

It should be noted that the effect of a nonisothermal distribution of e w on the surface 
can be analyzed qualitatively on the basis of energy conservation equation (1.3). In fact, 

P.o . ,o v,,p.~ / u. 
(2.1) 

[g = (g - gw )/(I - gw)]" After integrating (1.3) in the neighborhood of the symmetry plane, 
we write the following for Pr = i (for example): 

oo co 

z w o~ o~ t" f -  o~ 

0 O 

t -  gw O~ , )  
0 

Of 

(2.2) 

It follows from Eq. (2.2) that the solution is dependent on the quantity (~I/i - gw)Sgw/Sg, 
characterizing the nonisothermality of the surface. A detailed analysis of the solution for 
the laminar flow regime in the boundary layer was presented in [6]. 

Along with the results in the symmetry plane of the flow, Fig. 5d shows the ratio St/St i 
on the lateral conical surface N = 2.2 (dashed lines). These data were obtained on the basis 
of the solution of the problem in the coupled formulation in the same sections with respect 
to g. It is evident that nonisothermality of the surface has its greatest effect on the rela- 
tive Stanton numbers in the neighborhood of the spherical tip and that this effect increases 
with the transition of N from 0 to ~. Also, the difference in the solutions at g = 1.45 in- 
creases with ~ on the leeward side and decreases with an increase in ~ on the windward side. 
This can be attributed mainly to the distance from the stagnation point. 

On the section of the conical surface where the flow characteristics change little (g = 
4.54), the values of St/St i are close the lee side. On the windward side, the stratification 
of the curves increases with an increase in ~. 

Since it is time consuming to solve the coupled heat-transfer problem, it is interesting 
to compare the results obtained with exact and discrete formulations of the problem. Taking 
advantage of the conservative behavior of St/St* as a function of isothermal temperature 0 w 
(see Fig. 2), we assign the heat flow from the gas phase qw($, ~, 0) in boundary condition 
(1.6) in the form qw = [St(g, D)/St*]~*[I - 0w(g, N)] [~* = qw*/(l - ew*) was approximated 
from the calculated results]. Figure 6 compares the results of solution of the problem in 
the coupled formulation (solid curves) and the discrete formulation (dashed curves) at ~ = 
i0 ~ (a is the change in surface temperature in relation to time for ~ = 1.45, while b is the 
same for ~ = 4.54; lines i and 2 correspond to the meridional planes n = 0, 2.2). 
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It follows from comparison of the curves ew(T) in the regions where the local derivatives 
8ew/8$, 80w/8 q are significant that their contribution to the heat-transfer coefficient is 
important. This results in lowering of the surface temperature in the discrete formulation, 
when the value of (~/Cp) for isothermal conditions is used. For sections of the conical sur- 
face where the flow characteristics change little, the heat-transfer coefficient found for 
isothermal conditions can be employed. It should be noted that the nonisothermality of e w 
has less effect on the formation of the heat-transfer coefficient in the turbulent flow re- 
gime in the boundary layer than in the case of laminar flow. 

Thus, the heat flux is determined first of all by the history of the thermal and dynamic 
boundary layers and, secondly, by the local derivatives of surface temperature with respect 
to the circumferential and longitudinal coordinates referred to the temperature or enthalpy 
gradient. Thus, in those cases when the local derivatives are significant either due to the 
form of the body or due to an abrupt change in boundary conditions, use of the heat-transfer 
coefficient found for an isothermal wall may lead to errors in the calculation of the tempera- 
ture field in the material of the skin. 
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